#### H&S Dept.: K.S.R.M COLLEGE OF ENGINEERING, KADAPA Academic Year (AUTONOMOUS) 2023 - 2024B. Tech Mid Term Examinations June/July 2024 Subject Name: Business Economics and Accounting for Engineers 2025401 Subject Code **Duration: 90 Min** II Marks: 30 Regulation: R20UG Mid Term : Date: 26-06-2024 IV Branch: CE, ME, ECE, AI&ML Semester:

Answer Three Questions choosing One Question from each Part

All Questions carry equal marks

| Q. No. |                                       | Questi                    | ons                    |              | Marks | BL    | Cos |
|--------|---------------------------------------|---------------------------|------------------------|--------------|-------|-------|-----|
| 1      | What is Market and Explain            | r Features of             |                        | Markets?     | 10    | L2    | CO3 |
|        |                                       |                           | OR                     |              |       |       |     |
| 2      | Explain any six pricing met           | hods?                     |                        |              | 10    | L2    | CO3 |
| 3      | Define Accounting? Explai accounting? | 10                        | L2                     | CO4          |       |       |     |
|        |                                       |                           | OR                     |              |       |       |     |
| 4      | Journalise the following              | transactions              | in books of Mr. Kal    | yan          |       |       | 81  |
|        | 1.12.2020 Kalyan comm                 |                           |                        |              |       |       |     |
|        | 1.12.2020 Purchased Fu                |                           | 5,000                  |              |       |       |     |
|        | 3.12.2020 Purchase of go              | ods                       | Rs. 6                  | 5,000        |       | _     |     |
|        | 4.12.2020 Cash sales                  | 10                        | L2&L3                  | CO4          |       |       |     |
|        | 7.12.2020 Commission 1                | 5,000<br>400              |                        |              |       |       |     |
|        | 11.12.2020 Deposited int              |                           |                        | İ            |       |       |     |
|        | 15.12.2020 Sold to Simh               |                           |                        |              |       |       |     |
|        | 22.12.2020 Purchased M                |                           |                        |              |       |       |     |
|        | 24.12.2020 Received from              |                           |                        |              |       |       |     |
|        | 25.12.2020 Paid salaries              |                           |                        |              |       |       |     |
|        | 28.12.2020 Electricity ch             | arges                     |                        | ,000         |       |       |     |
|        | 31.12.2020 Office rent pa             |                           |                        |              |       |       |     |
|        |                                       |                           |                        |              |       |       |     |
| 5      | What is ratio analysis and e          | explain its ad            |                        | ns?          | 10    | L2    | CO5 |
|        |                                       |                           | OR                     |              |       | ,     | ·   |
| 6      | From the given balance she            | et of X Com               | pany Ltd, Calculate th | e following  |       |       |     |
|        | ratios: a) Current Ratio b) (         |                           |                        |              |       |       | į   |
|        |                                       |                           | ny Ltd. as on 31-03-20 |              | 10    | 14015 | COF |
|        | Liabilities                           | Amount                    | Assets                 | Amount       | 10    | L4&L5 | CO5 |
|        |                                       | Rs.<br>15,00,000          | Diant Machinem         | Rs. 8,75,000 |       |       |     |
|        | Equity Share Capital                  | Plant, Machinery<br>Stock | 5,50,000               |              |       |       |     |
|        | Debentures<br>Creditors               | 4,00,000<br>2,00,000      | Debtors                | 5,50,000     |       |       |     |
|        | Outstanding Expenses                  | 1,00,000                  | Cash in Hand           | 3,75,000     |       |       |     |
|        | Bank Loan                             | 2,00,000                  | Prepaid Expenses       | 50,000       |       |       |     |
|        | Total                                 | 24,00,000                 | Total                  | 24,00,000    |       |       |     |

BL - Bloom's Taxonomy Levels

<sup>1-</sup> Remembering, 2- Understanding, 3 - Applying, 4 - Analysing, 5 - Evaluating, 6 - Creating

# K.S.R.M. College of Engineering, Kadapa

(Autonomous)

Subject:

Marks:

Section:

2001402

: II

: IV

Subject Code

Mid Term

Semester

B. Tech Mid Term Examinations June -2024 Hydraulics & Hydraullic Machinary

30M Regulation:

A and B

CIVIL Dept.: Academic Year 2023 - 2024

**Duration: 90 Min** 

Date: 27-6-2024

R20UG

| Q. No | Question (s)                                                                                                                                                                                                                                                                                                                                                                | Marks | BL    | СО  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----|
| 1.    | A jet of water of diameter 50 mm having a velocity of 20 m/s strikes a curved vane which is moving with a velocity of 10 m/s in the direction of jet. The jet leaves the vane at an angle of 60° to the direction of motion of vane at outlet.                                                                                                                              | 10M   | L5    | CO3 |
|       | Determine  (i) The force exerted by the jet on the vane in the direction of motion  (ii) Work done/sec by the jet                                                                                                                                                                                                                                                           |       |       |     |
|       | (II) Work done/see by the jet                                                                                                                                                                                                                                                                                                                                               |       | l     |     |
| 2.    | Derive an expression for force exerted by the curved plate is moving in the direction of jet.                                                                                                                                                                                                                                                                               | 10M   | L5    | CO3 |
| 3.    | Explain the general layout of hydroelectric power plant with neat sketches?                                                                                                                                                                                                                                                                                                 | 10M   | L2    | CO4 |
|       | (OR)                                                                                                                                                                                                                                                                                                                                                                        |       | E m 2 |     |
| 4.    | A Pelton turbine has a mean bucket speed of 10 m/s with a jet of water flowing at the rate of 700 li/s under a head of 30 m. the buckets deflect the jet through an angle of $160^{\circ}$ . Calculate the power given by water to the runner and the hydraulic efficiency of the turbine. Assume $C_V = 0.98$                                                              | 10M   | L5    | CO4 |
| 5.    | The internal and external diameters of the impeller of a centrifugal pump are 200 mm and 400 mm respectively. The pump is running at 1200 rpm. The vane angles of the impeller at inlet and outlet are 20° and 30° respectively. The water enters the impeller radially and velocity of flow is constant. Determine the work done by the impeller per unit weight of water. | 10M   | L5    | CO5 |
| -     | (OR)                                                                                                                                                                                                                                                                                                                                                                        |       |       |     |
| 6.    | Explain the principle and working of a reciprocating pump by neat sketch.                                                                                                                                                                                                                                                                                                   | 10M   | L2    | COS |

# K.S.R.M COLLEGE OF ENGINEERING, KADAPA (AUTONOMOUS)

B. Tech Mid Term Examinations, June / July, 2024

Dept.: Civil Engineering
Academic Year
2023 – 2024

L6 - Creating

| Subject Code | : | 2001403 | Subject Name: | Soil Mechanics     |                     |
|--------------|---|---------|---------------|--------------------|---------------------|
| Mid Term     | : | II      | Marks: 30     | Regulation: R20 UG | Duration: 90 Min    |
| Year         | : | II      | Semester : IV | Sections : A, & B  | Date: 28.06.2024 AN |

| Q.  | No       | Question (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks    | Blooms<br>Level | CO         |
|-----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|------------|
| 1   | a.<br>b. | Develop an expression for vertical stress due to line load?  A load 1000 kN acts as a point load at the surface of a soil mass.  Estimate the stress at a point 3 m below and 4 m away from the point of the load by Boussinesq's theory. Compare the value with the result from Westergaard's theory.  OR                                                                                                                                                            | 5 5      | L3<br>L3        | CO3<br>CO3 |
| 2   | a.<br>b. | Explain about the Newmark's influence chart? Mention their uses.  A long strip footing of width 2 m carries a load of 400 kN/m.  Determine the maximum stress at a depth of 5 m below the center line of the footing                                                                                                                                                                                                                                                  | 5<br>5   | L2<br>L5        | CO3<br>CO3 |
| 3   | a.       | What is the effect of compaction on the engineering properties of the                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | L1              | CO4        |
|     | b.       | soil?  Describe the difference between standard and modified proctor compaction test.                                                                                                                                                                                                                                                                                                                                                                                 | 5        | L4              | CO4        |
| 4   | a.       | OR  The time to reach 60% consolidation is 30 sec for a sample of 1 cm thick tested in the laboratory under condition of double drainage. How many years will the corresponding layer in nature require to reach the same degree of saturation if it is 10 m thick and drainage on one side                                                                                                                                                                           | 5        | L4              | CO4        |
|     | b.       | only? In a consolidation test, the void ratio of the specimen which has 1.068 under the effective pressure of 214 kN/m², changed to 0.994 when the pressure was increased to 429 kN/m². Calculate the coefficient of compressibility, coefficient of volume change and compression index.                                                                                                                                                                             | 5        | L4              | CO4        |
| 5   | a.       | Discuss about the advantages of triaxial shear test over direct shear                                                                                                                                                                                                                                                                                                                                                                                                 | 5        | L4              | CO5        |
|     | b.       | test. A cylindrical specimen of saturated clay, 4.5 cm in diameter, and 9 cm long, is tested in an unconfined compression apparatus. Determine the cohesion if the specimen fails at an axial load of 450 N. The change in length of the specimen at failure is 9 mm.                                                                                                                                                                                                 |          | L5              | CO5        |
| . 6 |          | The following table gives data obtained from triaxial compression test conducted under undrained conditions on two specimens of same soil sample. The diameter and height are 40 mm and 80 mm respectively for both samples.  Sample No  Cell pressure $\sigma_3$ (kN/m²)  Deviator load at failure (N)  Axial compression (mm)  Find $\sigma_a$ and $\sigma_a$ by (i) analytical method and (ii) graphical method.  • L1 – Remembering  • L2 – Understanding  • L3 – |          | L5              | CO5        |
|     |          | LI - Remembering                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Creating | KI.             |            |

• L5 - Evaluating

L4 - Analyzing

#### Civil Engineering Dept.: K.S.R.M COLLEGE OF ENGINEERING, KADAPA Academic Year (AUTONOMOUS) 2023 - 2024B. Tech Mid Term Examinations, June-2024 Subject Name: Structural Analysis : 2001404 Subject Code **Duration: 90 Minutes** Regulation: R20 UG Marks: 30 Mid Term : II Date: 29.06.2024 Semester : IV Sections : A,B : II Year

| O No  | Question (s)                                                                                             | Marks | Skills | CO   |
|-------|----------------------------------------------------------------------------------------------------------|-------|--------|------|
| Q. No | Analyze the frame given below using Slope deflection method and draw BMD  25kN  2m 2m  4m, I  6m,2I 4m_I | 10    | L4     | CO 3 |
|       | OR                                                                                                       |       |        |      |
| 2.    | Analyze the frame given below using Slope deflection method and draw BMD  25kN  3m  3m  25kN/m  77777    | 10    | L4     | CO 3 |
| 3.    | Analyze the frame shown in figure using moment distribution method.  50kN  1m                            | 10    | L5     | CO 4 |
| 4.    | Analyze the continuous beam using Moment distribution method and draw BMD  20kN 30kN  3m 2m 3m 3m  5m 6m | 10    | L4     | СО   |

| 5. | A three hinged parabolic arch of span 40m and central rise 8m carries an UDL of 30kN/m over the left half span. Calculate the reactions at the supports and also calculate bending moment, radial shear and normal thrust at a distance of 10m from left support. | 10 | L5 | CO 5 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|------|
|    | OR                                                                                                                                                                                                                                                                |    |    |      |
| 6. | A two hinged parabolic arch of spam 60m and central rise 12m subjected to a concentrated load of 80kN at a distance of 15m from left support. Calculate the horizontal thrust, reactions and bending moment at a distance of 10m from left support.               | 10 | L3 | CO 5 |

L1-Remembering; L2-Understanding; L3-Applying; L4- Analyzing; L6-Evaluating; L6 Creating

| • .          |     |            | - TALCONIE ED     | INC KADAPA                                 | Dept.:  | Civil Engi  |    |
|--------------|-----|------------|-------------------|--------------------------------------------|---------|-------------|----|
| K.S.R.M      | CO  | LLEGE (    | OF ENGINEER       | RING, KADAPA                               | A       | cademic Ye  | ar |
|              |     | (AU        | TONOMOUS)         |                                            |         | 2023 - 2024 | 1  |
| B. T         | ech |            | rm Examination    | S, June-2024                               | ing     |             |    |
| Subject Code | :   | 2001405    |                   | Fransportation Engineer Regulation: R20 UG | Duratio | n: 90 Min   |    |
| Mid Term     | 1:  | II         | Marks: 30         | 1 0 D                                      |         | 01-07-2024  |    |
|              | 1:  | II         | Semester : IV     | Sections : A & B                           |         |             |    |
| Answer       | any | three ques | tions and one que | stion from each section is                 |         | - T         |    |

|            | Answer any three questions and one question from each section                                                                                                                                                                                                                                                                     | 35 1- | Skills | CO  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-----|
| <b>)</b> . | Question (s)                                                                                                                                                                                                                                                                                                                      | Marks | SKIIIS |     |
| 1          | Write in detail about Traffic Signals and its advantages and disadvantages                                                                                                                                                                                                                                                        | 10    | L1     | CO3 |
|            | OR                                                                                                                                                                                                                                                                                                                                |       |        |     |
| 2          | The average normal flow of traffic on cross roads A and B during design period are 400 and 250 pcu per hour. The saturation flow values on these roads are estimated as 1250 and 1000 pcu per hour respectively. The all red time required for pedestrain crossing is 12 sec. Design two phase traffic signal by websters method. | 10    | L5     | CO3 |
|            | a.)What are the components of flexible pavement? explain their functions.                                                                                                                                                                                                                                                         | 4     | L1     | CO4 |
| 3          | b.) Explain about modulus of subgrade reaction, Relative stiffness                                                                                                                                                                                                                                                                | 6     | L1     | CO4 |
|            | of slab, critical load positions  OR                                                                                                                                                                                                                                                                                              |       |        | T   |
| 4          | Calculate the stresses at interior, edge and corner regions of a cement concrete pavement using westergaards stress equations. Using the following data.  Wheel load=5100 kg, E=3*10 <sup>5</sup> kg/cm <sup>2</sup> , pavement thickness=18 cm, poisons ratio of concrete=0.15, k=6 kg/cm <sup>3</sup> , radius of contact       | 10    | L5     | CO4 |
|            | area=15 cm a) Explain Experimental Procedure about conducting aggregate                                                                                                                                                                                                                                                           |       | L2     | CO5 |
| 5          | b). Write Experimental Procedure for ductility test of bitumen.                                                                                                                                                                                                                                                                   | 5     | L2     | CO5 |
|            | b). Write Experimental Procedure for duetaty  OR                                                                                                                                                                                                                                                                                  |       |        |     |
|            |                                                                                                                                                                                                                                                                                                                                   | 5     | L2     | COS |
| -          | <ul><li>a). Write about the construction procedure of WBM road.</li><li>b)Describe Significance of highway drainage and what are the</li></ul>                                                                                                                                                                                    | 5     | L2     | CO  |

| K.S.R.M         | CO    | LLEGE    | OF ENGINEE                            | RING, KADAPA       | Dept.:      | H&S      |
|-----------------|-------|----------|---------------------------------------|--------------------|-------------|----------|
| 11011111        | -     |          | JTONOMOUS)                            | KING, KADAI A      | Acaden      | nic Year |
| N               | Iid ' | Term Exa | Term Examinations June/July-2024 2024 | 24                 |             |          |
| Subject<br>Code | :     | 2024410  | Subject: Unive                        | ersal Human Values |             |          |
| Mid Term        | :     | II       | Marks: 30                             | Regulation : R-20  | Duration :  | 90 Min   |
| Year            | :     | II       | Semester : IV                         | Branch:            | Date :02/07 | /2024    |

Answer the following questions. Each question carries Equal marks.

| Q.<br>No. | QUESTIONS                                                                                                                                                    | Marks  | Blooms<br>Level | СО         |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|------------|
| 1         | (a)Analyze about uncertainties in risk assessment. (b)List out a few factors to reduce risks.                                                                | 5<br>5 | L4<br>L1        | CO3<br>CO3 |
|           | OR                                                                                                                                                           |        |                 |            |
| 2         | (a) Define 'Safety and risk'. (b) What lessons can be learned from Chernobyl nuclear disaster?                                                               | 5 5    | L3<br>L1        | CO3        |
| 3         | <ul><li>(a) Illustrate the content of value education.</li><li>(b) Explain briefly 'the process of self-exploration'.</li></ul>                              | 5<br>5 | L1<br>L2        | CO4<br>CO4 |
|           | OR                                                                                                                                                           |        |                 |            |
| 4         | (a)How can we verify proposals on the basis of our natural acceptance? Explain with example. (b) What is your present vision of a happy and prosperous life? | 5      | L4<br>LJ        | CO4        |
| 5         | Elaborate the terms (a) Harmony in society (b) Co-existence with nature                                                                                      | 5      | L6              | CO5        |
|           | OR                                                                                                                                                           |        |                 |            |
| 6         | (a) What is justice and how does it leads to mutual happiness. (b) "Trust is the base of values"- Give answer in detail.                                     | 5<br>5 | L6<br>L1        | CO5<br>CO5 |

- L1 RememberingL2 Understanding
- L3 Applying
- L4 Analyzing
- L5 EvaluatingL6 Creating

### K.S.R.M. College of Engineering, Kadapa (Autonomous)

Dept.: EEE Academic Year

B. Tech Mid Term Examinations June - 2024

2023 - 2024

| Course Code | : | 2021401 | Course:  | Speci | al functions ar | nd Complex | x Analysis           |
|-------------|---|---------|----------|-------|-----------------|------------|----------------------|
| Mid Term    | : | 11      | Marks:   | 30M   | Regulation:     | R20UG      | Duration: 90 Min     |
| Semester    | : | IV      | Section: |       |                 |            | Date: 26th June 2024 |

| Q. No | Question (s)                                                                                                                                                                          | Marks | BL | со        |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----------|
| 1.    | Discuss the transformation $w = \sin z$ .                                                                                                                                             | 10M   | L6 | CO3       |
|       | (OR)                                                                                                                                                                                  |       | L  | <u>L.</u> |
| 2.    | Verify Cauchy's theorem by integrating e <sup>12</sup> along the boundary of the tringle with the vertices at the points 1+i, -1+i, and -1-i.                                         | 10M   | L3 | CO4       |
| 3.    | Evaluate, using Cauchy's Integral Formula $\oint_c^{\frac{1}{2}} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)(z-2)} dz$ where c is                                                        |       |    |           |
|       | the circle $ z  = 3$ .                                                                                                                                                                | 10M   | L5 | CO4       |
|       | (OR)                                                                                                                                                                                  |       |    |           |
| 4.    | $If F(\xi) = \oint_{C} \frac{4z^{2} + z + 5}{z - \xi} dz, where c is the ellipse (\frac{x}{2})^{2} + (\frac{y}{3})^{2}$ $= 1, find the value of i) F(3.5) ii) F(i), F'(-1), F''(-i).$ | 10M   | L1 | CO4       |
| 5.    | Evaluate $\int_{c} \frac{z^3 dz}{(z-1)^2(z-3)}$ where C is $ z  = 2$ by Residue theorem.                                                                                              | 10M   | L5 | CO5       |
|       | (OR)                                                                                                                                                                                  |       | 1  |           |
| 6.    | Prove that $\int_0^{2\pi} \frac{d\theta}{a + b \sin \theta} = \frac{2\pi}{\sqrt{a^2 - b^2}} (a > b > 0).$                                                                             | 1014  | L5 | CO5       |

| K.S.R.N      | 1 C( | DLLEGE   | OF ENGIN                                           | EERING, KADAPA          | Dept.:    | H&S       |
|--------------|------|----------|----------------------------------------------------|-------------------------|-----------|-----------|
| n a          |      |          | JTONOMOUS                                          |                         | Acad      | emic Year |
| В. 1         | ech  | Mid Term | Examination                                        | s June/July 2024        | 202       | 3-2024    |
| Subject Code | :    | 2025402  |                                                    | ne: Fundamentals of Man |           |           |
| Mid Term     | :    | П        | Marks: 30                                          | Regulation: R20UG       | Duration: |           |
| Semester:    |      | IV       | <del>*                                      </del> | Branch: EEE             | Date: 27- | 06-20-24  |

#### Answer Three Questions choosing One Question from each Part All Questions carry equal marks

| Q. No. | Questions                                                                     | Marks | BL | COs |
|--------|-------------------------------------------------------------------------------|-------|----|-----|
| 1      | What HRP and Explain Human Resource Planning Process?                         | 10    | L2 | CO3 |
|        | OR                                                                            |       |    |     |
|        | Explain the following:                                                        |       |    | I   |
| 2      | a) Organizational Culture                                                     | 05    | L2 | CO3 |
|        | b) Organizational Climate                                                     | 05    | L2 | CO3 |
| 3      | Define Leadership? Explain Behavioural Leadership and Situational Leadership? | 10    | L2 | CO4 |
|        | OR                                                                            |       |    |     |
| 4      | What is Motivation? Explain any two Content Motivational Theories?            | 10    | L2 | CO4 |
| 5      | Define Control and Elaborate Steps in Controlling Process?                    | 10    | L2 | CO5 |
|        | OR                                                                            |       |    |     |
| 6      | Briefly explain Budgetary and Non- Budgetary Controlling techniques?          | 10    | L2 | CO5 |

BL – Bloom's Taxonomy Levels
1- Remembering, 2- Understanding, 3 – Applying, 4 – Analysing, 5 – Evaluating, 6 - Creating

## K.S.R.M COLLEGE OF ENGINEERING, KADAPA

(AUTONOMOUS)

**B.TechMid Term Examinations JUNE 2024** 

Dept.: EEE
Academic Year
2023-2024

| Subject Code | : | 2002403 | Subject:Induct | tion Motors & Synchro | nous Machines    |
|--------------|---|---------|----------------|-----------------------|------------------|
| Mid Term     | : | II      | Marks: 30      | Regulation: R20 UG    | Duration: 90 Min |
| Year         | : | II      | Semester:IV    | Section:A             | Date: 28/06/2024 |

| Q.<br>No | il I miles regen des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | Marks                                   | Skills     | СО                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | voltage re<br>Turn Me                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Explain                                                  | how regul                               | lation car | n be deter                                                                                                     | mined by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Az                                                   | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | - Land Charles and Description of the Control of th |                                                                                                                                                                                                                                                                                | THE OWNER OF THE PARTY OF THE P | ***************************************                  | (                                       | OR         | aproprieta de la composição de la constante de |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | druciniu are area.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A 15kVA, 400V, 50Hz, 3-Ø alternator (Y connected) in Open Circuit tegave the following data:                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                         |            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                              | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                        | 3.5                                     | 4          | 4.5                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2        | Eoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 266                                                                                                                                                                                                                                                                            | 334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 377                                                      | 422                                     | 450        | 484                                                                                                            | 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Е                                                    | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | An excitation of 2A gave full-load current on short-circuit. Armature resistance per phase is $1.2\Omega$ . Calculate full-load regulation using Synchronous Impedance method at (i) 0.8 lagging and (ii) 0.8 leading power factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                         |            |                                                                                                                | A country and a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | ied for pro<br>nators to t              | -          |                                                                                                                | on? Explain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Az                                                   | CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | estidate de la segui de primeiro y Proprincio y Primeiro (de 1900 de 1800 de                                                                                                                                                                                                   | ame op de of the case of a course had been been given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ngga ngga dagan man Pagga da manga kan at an ang ang ang |                                         | OR         |                                                                                                                | Marketon of the University Marketon Printers of the Confession of | - Andrews - Angele - Andrews - Andrews - Andrews - Andrews - Angele - Angel | · A - 100-100-100-100-100-100-100-100-100-1          | Acceptance of the second secon |
| 4        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | nous pow                                |            | 555 14 0655 500                                                                                                | ynchronous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Az                                                   | CO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 1750                                                                                                                                                                                                                                                                        | us motor<br>Synchro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | _                                       | ? Briefly  | y discuss                                                                                                      | the starting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Az                                                   | CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | and the first of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -</del>       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | OR         | 00000000000000000000000000000000000000                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A. A. P. P. G. C. P. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00 (r) (see 10 10 10 10 10 10 10 10 10 10 10 10 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6        | factory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OR  A Synchronous Motor absorbing 50kW is connected in parallel with factory load of 250kW having a lagging power factor of 0.8. If the combination has a power factor of 0.9 lag, how many leading kVAR are to be supplied by the motor? At what power factor it should work? |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                         |            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| W. C                                    | D 8  | 1 Callag | o of Engir              | oorin | g Kadana      |       | Dept.:                  | EEE       |
|-----------------------------------------|------|----------|-------------------------|-------|---------------|-------|-------------------------|-----------|
| K.S.R.M. College of Engineering, Kadapa |      |          |                         |       |               |       | Academic Year           |           |
| В.                                      | Tech | •        | lutonomou<br>n Examinat |       | ıne – 2024    |       | 20                      | 23 – 2024 |
| Subject Code                            | 1:   | 2002404  | Subject:                | LINEA | R CONTROL SYS | TEMS  |                         |           |
| Mid Term                                | 1:   | 11       | Marks:                  | 30M   | Regulation:   | R20UG | Duration:               |           |
| Semester                                | 1:   | IV       | Section:                | 1     |               |       | Date: 29 <sup>h</sup> J | lune 2024 |

| Q. No | Question (s)                                                                                                                                                      | Marks | BL | СО  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----|
| 1     | Examine the characteristic equation $s^4 + 2s^3 + s^2 + 4s + 2 = 0$ for stability                                                                                 | 10M   | L4 | CO2 |
|       | (OR)                                                                                                                                                              |       |    |     |
| 2.    | A unity feedback control system has an open loop transfer function $G(s) = \frac{K}{S(S+4)}$ . Draw the Root Locus and determine the value of K, if               | 10M   | L4 | CO2 |
|       | the damping ratio $\xi$ is to be 0.707?                                                                                                                           |       |    |     |
| 3.    | The open loop transfer function of a system is given by $G(s) = \frac{20}{5(5+1)(1+0.015)}$ . Sketch the Bode plot and determine the gain Margin and Phase Margin | 10M   | L3 | CO2 |
|       | (OR)                                                                                                                                                              |       |    |     |
| 4.    | The open loop transfer function of a system is given by: $G(s) = \frac{40}{(s+4)(s^2+2s+1)}$ . Sketch the Polar plot and comment on the stability of              | 10M   | L4 | CO1 |
|       | the system.                                                                                                                                                       | 10M   | L2 | CO4 |
| 5.    | Explain Design of lag Compensator in frequency domain                                                                                                             | TOIAL | JC | 004 |
|       | (OR)                                                                                                                                                              |       |    |     |
| 6.    | Explain Design of lead Compensator in frequency domain                                                                                                            | 10M   | L2 | CO4 |

## K.S.R.M COLLEGE OF ENGINEERING, KADAPA

(AUTONOMOUS)

B.Tech Mid Term Examinations June/July 2024

Dept.: EEE
Academic Year
2023 – 2024

|              |   | 2002405 | Subject: Power | Systems-I          |                  |
|--------------|---|---------|----------------|--------------------|------------------|
| Subject Code | : | 2002700 |                | Regulation: R20 UG | Duration: 90 Min |
| Mid Term     | : | II      | Marks: 30      | Regulation         | Date: 01/07/2024 |
| Year         | : | II      | Semester : IV  | Section:           | Date: 01/0//2024 |

| ear   |                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks | BL    | CO  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-----|
| ). No | Question (s)                                                                                                                                                                                                                                                                                                                                                                                                                    | 10    | L2    | CO2 |
| 1     | Explain the Methods of Improving String Efficiency.                                                                                                                                                                                                                                                                                                                                                                             |       |       |     |
|       | OR                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |     |
| 2     | An overhead line conductor having a parabolic configuration weighs 1.925 Kg per mt of length. The area of cross section of the conductor is 2.2 cm <sup>2</sup> and the ultimate strength is 8000 Kg/cm <sup>2</sup> The supports are 600 mts apart having 15 mts difference of levels Calculate the sag from the tailor of the two supports which must be allowed so that the safety factor shall be 5.Assume that ice load is | 10    | L3    | CO3 |
|       | 1 kg per mt run.  Derive the expression for inductor for three phase transposed overhead                                                                                                                                                                                                                                                                                                                                        | 10    | L2,L3 | CO4 |
| 3     | line.                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |     |
| 4     | OR  A three phase 50Hz,66KV overhead line conductors are placed in horizontal plane. The conductor diameter is 1.25 cm. If the line length is 100 km, calculate the charging current per phase.                                                                                                                                                                                                                                 | 10    | L2    | CO3 |
|       | What is Corona? Explain the factors effecting Corona.                                                                                                                                                                                                                                                                                                                                                                           | 10    | L2    | CO3 |
| 5     | What is Corona? Explain the factors effecting                                                                                                                                                                                                                                                                                                                                                                                   |       |       |     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10    | L2    | CO2 |
| 6     | Write about different types of Underground Cables.                                                                                                                                                                                                                                                                                                                                                                              |       |       |     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |       |     |

#### K.S.R.M COLLEGE OF ENGINEERING, KADAPA Dept.: ME (AUTONOMOUS) Academic Year B.Tech Mid Term Examinations -June, 2024 2023-2024 Subject Code 2021401 Subject: Probability, Statistics And Numerical Methods Mid Term II Marks: 30 Regulation: R20 UG Duration: 90 Min Year II Semester: IV Section: A&B Date: 27-06-2024(AN) Answer all questions: $3 \times 10 = 30 \text{ Marks}$ Q. No Question (s) Marks Skills CO (a)Two samples of sizes 9 and 8 give the sum of squares of deviations from their respective means equal to 160 inches square and 91 inches square respectively. Can these be regarded as drawn from the same 5 normal population? 1 (b) The means of two random samples of sizes 9 and 7 are 196.42 and L4 CO<sub>3</sub> 198.82 respectively. The sums of the squares of the deviations from the mean are 26.94 and 18.73 respectively. Can the samples be considered 5 to have been drawn from the same normal population? OR The following table is given Eye Eye colour in sons Total colour Not light light in Not light 230 148 378 2 10 L4 CO<sub>3</sub> fathers light 251 471 622 Total 381 619 1000 Test whether the colour of the son's eye is associated with that of the fathers. Determine a real root of the equation $x^3 - 2x - 5 = 0$ by regula-falsi 3 10 L5 CO<sub>4</sub> method correct to four decimal places. OR Solve 20x + y - 2x = 17; 2x - 3y + 20z = 25; 3x + 20y - z = -18 by 4 10 L3 CO<sub>4</sub> Gauss Seidel iteration method. The table gives the distances(y) in nautical miles of the visible horizon for the given heights(x) in feet above the earth's surface: 100 150 200 5 250 300 350 400 10 L5 CO<sub>5</sub> 10.63 13.03 15.04 16.81 18.42 19.90 21.27 Evaluate the value of y when (i) x = 160ft (ii) x = 410ft. OR Evaluate the polynomial f(x) by using Lagrange's formula and hence find f(3) for 6 10 L5 CO<sub>5</sub> 0 X 2 1 5 f(x)2 3 12 147

## K.S.R.M COLLEGE OF ENGINEERING, KADAPA

(AUTONOMOUS)

B.Tech II Mid Term Examinations, June/July- 2024

Dept.:

Mechanical Engineering

Academic Year

2023 - 2024

|   | Subject<br>Code | : | 2003403 | Subject: APPLIEI | THERMODYNAMIC     | S                   |
|---|-----------------|---|---------|------------------|-------------------|---------------------|
| , | Mid<br>Term     | : | II      | Marks: 30        | Regulation: R20UG | Duration: 90 Min    |
| , | Year            | : | II      | Semester : IV    | Section: A & B    | Date: 28-06-2024 AN |

**NOTE:** Answer All Questions

| Q. N | No. | Question                                                                                                                                                | Marks | BLs | CO              |
|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----------------|
| 1.   |     | Analyze the stages of combustion in SI engines.                                                                                                         | 10M   | L4  | CO2             |
|      |     | (OR)                                                                                                                                                    |       |     |                 |
| 2.   | (a) | What is delay period and explain the factors that affect the delay period in SI engines                                                                 | 5M    | L2  | CO2             |
|      | (b) | Explain the phenomenon of detonation in CI engines                                                                                                      | 5M    |     | CO2             |
| 3.   | (a) | Derive the expression for Rankine cycle efficiency                                                                                                      | 5M    | L5  | CO4             |
|      | (b) | A simple Rankine cycle works between pressure of 30 bar and 0.04 bar, the initial condition of steam being dry saturated, estimate the cycle efficiency | 5M    | L5  | CO <sup>2</sup> |
|      |     | (OR)                                                                                                                                                    |       |     |                 |
| 4.   |     | Explain the methods of increasing the thermal efficiency of a Rankine cycle.                                                                            | 5M    | L2  | CO <sup>2</sup> |
| 5.   | (a) | Define the term 'steam nozzle'. Explain various types of nozzles                                                                                        | 5M    | L2  | CO:             |
|      | (b) | Explain briefly simple Vapour Compression Refrigeration system                                                                                          | 5M    | L2  | CO              |
|      | 1   | (OR)                                                                                                                                                    |       |     |                 |
| 6.   | (a) | advantages.                                                                                                                                             | 5M    | L4  | CO              |
|      | (b) | Obtain analytically the critical pressure ratio in terms of the index of the expansion                                                                  | 5M    | L5  | СО              |

- L1 Remembering
- L2 Understanding
- L3 Applying
- L4 Analyzing
- L5 Evaluating
- L6 Evaluating

|              | KS                                                     |         | Dept.:     | MECH                   |             |       |            |            |
|--------------|--------------------------------------------------------|---------|------------|------------------------|-------------|-------|------------|------------|
|              | . K.S.R.M. College of Engineering, Kadapa (Autonomous) |         |            |                        |             |       |            |            |
| . 1          | B. Te                                                  |         | m Examinat |                        | ne- 2024    |       | 20         | )23 – 2024 |
| Subject Code | 1:                                                     | 2003403 | Subject:   | KINEMATICS OF MACHINES |             |       |            | 1          |
| Mid Term     | :                                                      | II      | Marks:     | 30M                    | Regulation: | R20UG |            |            |
| Semester     | :                                                      | IV      | Section:   | A and                  | I B         |       | Date: 29th | June 2024  |

| Q.No  | Question (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks | BL | CO  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----|
| 1.    | Locate all the instantaneous centres of the slider crank mechanism as shown in Fig. The lengths of crank OB and connecting rod AB are 100 mm and 400 mm respectively. If the crank rotates clockwise with an angular velocity of 10 rad/s, Determine: 1. Velocity of the slider A, and 2. Angular velocity of the connecting rod AB.                                                                                                                                                                                                                                                                                                                                                                                                             | 10    | L5 | CO3 |
|       | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |    |     |
| 2.    | Give a neat sketch of the straight line motion Hart mechanism. Prove that it produces an exact straight line motion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10    | L5 | CO3 |
| 3.    | A cam operating a knife-edged follower has the following data:  (a) Follower moves outwards through 40 mm during 60° of cam rotation.  (b) Follower dwells for the next 45°.  (c) Follower returns to its original position during next 90°.  (d) Follower dwells for the rest of the rotation.  The displacement of the follower is to take place with simple harmonic motion during the outward and with Uniform velocity during return stroke. The least radius of the cam is 50 mm. Draw the profile of the cam when the axis of the follower is offset 20mm towards right from the cam axis. If the cam rotates at 300 r.p.m., determine maximum velocity and acceleration of the follower during the outward stroke and the return stroke. | 10    | L1 | CO4 |
|       | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |    |     |
| 4.    | A cam rotating clockwise with a uniform speed is to give the roller follower of 20 mm diameter with the following motion:  (a) Follower to move outwards through a distance of 30 mm during 120° of cam rotation;  (b) Follower to dwell for 60° of cam rotation;  (c) Follower to return to its initial position during 90° of cam rotation; and  (d) Follower to dwell for the remaining 90° of cam rotation.  The minimum radius of the cam is 45 mm and the line of stroke of the follower is offset 15 mm from the axis of the cam and the displacement of the follower is to take place with simple harmonic motion on both the outward and return strokes. Draw the cam profile.                                                          |       | L4 | CO4 |
| 5.(a) | Class that the involute profile satisfies the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | L2 |     |
| (b)   | Define the following (a)Module (b) Addendum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2     | L2 | CO  |
|       | (OR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |    |     |
| 6.    | A pinion having 30 teeth drives a gear having 80 teeth. The profile of the gears is involute with 20° pressure angle, 12 mm module and 10 mm addendum. Find the length of path of contact, arc of contact and the contact ratio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10    | L4 | CO  |

### K.S.R.M COLLEGE OF ENGINEERING, KADAPA

(AUTONOMOUS)

B.Tech. II Mid Term Examinations, June- 2024

Dept.:

Mechanical Engineering

Academic Year

2023 - 2024

| Subject<br>Code | : | 2003405 | Subject: MACHINE TOOLS |                   |                  |  |  |  |  |  |  |
|-----------------|---|---------|------------------------|-------------------|------------------|--|--|--|--|--|--|
| Mid<br>Term     |   | П       | Marks: 30              | Regulation: R20UG | Duration: 90 Min |  |  |  |  |  |  |
| Year            |   | II      | Semester: IV           | Section: A & B    | Date: 01-07-2024 |  |  |  |  |  |  |

**NOTE: Answer All Questions** 

|    | NOTE. Answer An Questions                                                                                       |       |    |     |
|----|-----------------------------------------------------------------------------------------------------------------|-------|----|-----|
|    |                                                                                                                 | Marks | BL | CO  |
| 1. | Outline the operations performed on a drilling machine and explain any five operations with a neat sketch?      | 10M   | L2 | CO3 |
|    | (OR)                                                                                                            |       |    |     |
| 2. | Explain the parts of a horizontal boring machine with a neat sketch?                                            | 10M   | L2 | CO3 |
| 3. | Analyze the working mechanism of universal dividing head with a neat sketch?                                    | 10M   | L4 | CO4 |
|    | (OR)                                                                                                            |       |    |     |
| 4. | How are milling machines classified? Explain the parts of horizontal milling with a neat sketch?                | 10 M  | L2 | CO4 |
| 5. | Explain the wheel marking system of a grinding wheel as per indian standards?                                   | 10M   | L2 | CO5 |
|    | (OR)                                                                                                            |       |    |     |
| 6. | Illustrate about centreless grinders and the feeds that are involved in centreless grinders with a neat sketch? | 10M   | L2 | CO5 |
|    |                                                                                                                 |       |    |     |

#### Dept.: ECE K.S.R.M COLLEGE OF ENGINEERING, KADAPA Academic Year (AUTONOMOUS) 2023 - 2024 B. Tech Mid Term Examinations April 2024 : 2021403 Subject Name: PROBABILITY THEORY AND STOCHASTIC PROCESSES Subject Code Mid Term Marks: 30 Regulation: R20UG **Duration: 90 Min** : II Section: A,B&C Date:-27-06-2024

Answer any Three Questions choosing One Question from each Unit.

Semester: IV

| Q. No      | Question (s)                                                                                                                                                             | Marks                                   | BL      | СО             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------|----------------|
|            | UNIT-I                                                                                                                                                                   |                                         |         |                |
|            | a) State & prove central limit theorem for equal                                                                                                                         |                                         | 2       | CO212.3        |
|            | distribution?                                                                                                                                                            | 5                                       | L2      |                |
| 1          | b)<br>Let $f_{XY}(x, y) = x + y$ , for $0 \le x \le 1$ , $0 \le y \le 1$                                                                                                 |                                         |         |                |
|            | = 0, otherwise                                                                                                                                                           | -                                       | L3      | CO212.3        |
|            | Find the conditional density of the following:                                                                                                                           | 5                                       | 1       | 1              |
|            | (i) X given Y.                                                                                                                                                           |                                         | 1 1     |                |
|            | (ii) Y given X.                                                                                                                                                          |                                         | : [<br> |                |
|            | OR                                                                                                                                                                       |                                         |         | 000100         |
|            | a) Briefly explain about jointly Gaussian random variables.                                                                                                              | 5                                       | L1      | CO212.3        |
|            | b) Random variables X and Y have the joint density:                                                                                                                      | 3                                       |         |                |
| 2          |                                                                                                                                                                          | *************************************** |         |                |
|            | $f_{XY}(x,y) = \frac{1}{24}$ ; for $0 < x < 6$ and $0 < y < 4$                                                                                                           | _ 5                                     | L3      | CO212.3        |
|            | = 0; elsewhere                                                                                                                                                           | t<br>t                                  |         |                |
|            | What is the expected value of the function $g(X,Y) = (X,Y)^2$ ?                                                                                                          | ,<br>                                   |         |                |
|            | UNIT-II                                                                                                                                                                  | 1                                       |         |                |
| 3          | a) Define ACF? State and prove the properties of ACF?                                                                                                                    | . 5                                     | L2      | CO212.4        |
|            | b) Consider random processes, $X(t) = A \cos(w_1 t + \theta)$ and $Y(t) = B \cos(w_2 t + \emptyset)$ , where $A, B, w_1, w_2$ are constants, while $\theta \& \emptyset$ |                                         | 1       | 00212.         |
|            | are statistically independent random variables uniformly distributed on $(0, 2\pi)$ .                                                                                    | 5                                       | L4      | CO212.4        |
|            | Show that x(t) and y(t) are jointly WSS.                                                                                                                                 |                                         |         |                |
|            | OR                                                                                                                                                                       |                                         |         |                |
|            | a) Define Random process? Explain the classification of Random Process?                                                                                                  | 5                                       | L2      | CO212.4        |
| 4          | b) Define Psd? State and prove the properties of Psd?                                                                                                                    | 5                                       | L2.     | CO212.4        |
|            | UNIT-III                                                                                                                                                                 |                                         |         |                |
|            | a) The ACF of a WSS random process $X(t)$ is given by $R_{XX}(\tau) = A\cos(w_{0\tau})$                                                                                  | 5                                       | L2      | CO2 12.        |
| -          | where A and Wo are constants. Find psd.                                                                                                                                  | 5                                       | L4      | 11111          |
| 5          | b) Define Stationary Process? Explain the classification of it?                                                                                                          | ì                                       |         |                |
| ********** | OR                                                                                                                                                                       |                                         |         | · Walland Land |

| b) Discuss about bandpass, narrow band, band limited random processes and 5 L2 CO212.5 | 6 | a) Explain about white noise and coloured noise                           | 1 1 1 1 |     | 000107  |  |
|----------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------|---------|-----|---------|--|
|                                                                                        | • |                                                                           | -       | TO  | CO212.5 |  |
|                                                                                        |   | b) Discuss about bandpass, narrow band, band limited random processes and | 3       | 12: | CO2125  |  |
|                                                                                        |   | list out the properties of it?                                            | 5       | L2  | CO212.3 |  |

BL – Bloom's Taxonomy Levels (1- Remember, 2- Understand, 3 – Apply, 4 – Analyze, 5 – Evaluate, 6 - Create)

#### K.S.R.M. College of Engineering, Kadapa (Autonomous)

#### B. Tech Mid Term Examinations JUNE - 2024

Dept.: **ECE Academic Year** 2023-2024

| Subject Code | :  | 2004403 | Subject: | Microprocessors and Microcontr |             |       | llers                |  |  |  |
|--------------|----|---------|----------|--------------------------------|-------------|-------|----------------------|--|--|--|
| Mid Term     | :  | 11      | Marks:   | 30M                            | Regulation: | R20UG | Duration: 90 Min     |  |  |  |
| Semester     | 1: | IV      | Section: | A, B a                         | nd C        |       | Date: 28-06-2024(AN) |  |  |  |

| Q. No | Question (s)                                                                                                | Marks | BL      | СО  |
|-------|-------------------------------------------------------------------------------------------------------------|-------|---------|-----|
| 1.    | a) Explain the programmable peripheral interface 8255.                                                      | 5M    | L2      | CO2 |
|       | b) List out the features of 8259.                                                                           | 5M    | L2      | CO1 |
|       | (OR)                                                                                                        |       | <b></b> |     |
| 2.    | a) Explain the programmable communication interface 8251.                                                   | 5M    | L2      | CO2 |
|       | b) Write an ALP to generate triangular waveform using DAC?                                                  | 5M    | L2      | CO1 |
| 3.    | a) Explain the architecture of 8051 microcontroller with a neat block diagram                               | 5M    | L2      | CO2 |
|       | b) Design an interface 32Kbytes of ROM and 16Kbytes of RAM to the 8051 microcontroller.                     | 5M    | L3      | CO5 |
|       | (OR)                                                                                                        |       | *       |     |
| 4.    | a) List out the features of the 8051 microcontroller.                                                       | 5M    | L2      | CO1 |
|       | b) Write a program to generate a delay of 1ms using Timer0. Assume that the oscillator frequency is 12 MHZ. | 5M    | L3      | CO4 |
| 5.    | a) What are the various registers in ARM? Explain?                                                          | 5M    | L2      | CO1 |
|       | b) Explain Single register load-store instructions of ARM?                                                  | 5M    | L3      | CO2 |
|       | (OR)                                                                                                        |       |         |     |
| 6.    | a) Explain ARM design philosophy.                                                                           | 05M   | L2      | CO1 |
|       | b) Compare the differences between RISC and CISC.                                                           | 05M   | L2      | CO1 |



| K.S.R.M C    | OL  | LEGE OF | ENGINEER        | ING, KADAPA      | Dept.: ECE          |
|--------------|-----|---------|-----------------|------------------|---------------------|
|              |     |         | ONOMOUS)        |                  | Academic Year       |
| Mid          | -Te |         | nations June/Ju | aly- 2024        | 2023 - 2024         |
| Subject Code | :   | 2004404 | Subject: EM V   | VAVES AND TRANS  | SMISSION LINES      |
| Mid Term     | :   | II      | Marks: 30       | Regulation: R20  | Duration: 90 Min    |
| Year         | :   | . II    | Semester: IV    | Sections: A, B&C | Date: 29.06.2024 AN |

Note: Answer all questions choosing one from each unit

| Q. No | Question (s)                                                                                                                                                                             | Marks  | BL       | CO   |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|------|
| 1     | Derive the boundary conditions for  (i) Dielectric – Dielectric interface  (ii) Conductor-Dielectric Interface                                                                           | 5<br>5 | L3<br>L3 | CO 3 |
|       | OR                                                                                                                                                                                       |        |          |      |
| 2     | a). Derive all the relations between E & H b).Derive the wave equations for Dielectric medium.                                                                                           | 5<br>5 | L3       | CO 4 |
| 3     | a) Define Poynting vector. State and prove Poynting Theorem b) Evaluate the velocity of propagation, attenuation constant, phaseconstant and intrinsic impedance for a forward-traveling | 5      | L3       | CO 4 |
|       | wave in a large block of copper. ( $\sigma = 5.8 \times 10^7 \text{ S/m}, \varepsilon_r = \mu_r = 1$ ).                                                                                  | 5      | L5       |      |
|       | OR                                                                                                                                                                                       |        |          |      |
| 4     | <ul><li>a). Explain the Oblique Incidences on a perfect conductor</li><li>b) Demonstrate about critical angle.</li></ul>                                                                 | 6<br>4 | L3       | CO 4 |
| 5     | <ul><li>a) Derive the transmission line equations for voltage and currents.</li><li>b) Define Single stub matching.</li></ul>                                                            | 7 3    | L3       | CO5  |
|       | OR                                                                                                                                                                                       |        |          |      |
| 6     | <ul><li>a). Demonstrate the construction of Smith-Chart.</li><li>b).Describe the lossless and distortion-less transmission lines.</li></ul>                                              | 5<br>5 | L2<br>L2 | CO 5 |

#### Note:

L1-Remembering

L2-Understanding

L3-Applying

L4- Analyzing

L5-Evaluating

L6-creating

# K.S.R.M COLLEGE OF ENGINEERING, KADAPA (AUTONOMOUS)

Mid Term Examinations JUNE-2024

Dept. ECE Academic Year 2023 - 2024

| Subject Code | : | 2004405 | Subject: Linear | and Digital IC Appl | ications            |
|--------------|---|---------|-----------------|---------------------|---------------------|
| Mid Term     | : | 111     | Marks : 30      | Regulation : R20    | Duration: 90 Min    |
| Year         | : | II      | Semester : IV   | Sections : A,B&C    | Date: 01.07.2024 AN |

Note: Answer all questions choosing one from each unit

| Q. No | Question (s)                                                                                                                                                                                                                                      | Marks | CO         | Blooms<br>Level |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-----------------|
| 1     | <ul> <li>a) Derive the expression for the time interval of output pulse of a 555 based monostable multivibrator. (5M)</li> <li>b) Derive the expression for count N and explain the operation of Dual slope integration type ADC. (5M)</li> </ul> | 10    | CO5<br>CO3 | L4<br>L4        |
|       | OR                                                                                                                                                                                                                                                |       |            |                 |
| 2     | a) What is PLL, explain its principle of operation and description of individual blocks. (5M) b) Define DAC and write about the design of Weighted resistor DAC. (5M)                                                                             | 10    | CO3<br>CO3 | L1<br>L1        |
| 3     | Explain in detail CMOS steady state electrical behavior. (10M)                                                                                                                                                                                    | 10    | CO5        | L5              |
|       | OR                                                                                                                                                                                                                                                |       |            |                 |
| 4     | a) Explain the operation of a CMOS inverter circuit with the help of truth table. (5M) b) What is the importance of CMOS logic families; explain about 74HC and 74HCT logic families? (5M)                                                        | 10    | CO5<br>CO5 | L5<br>L2        |
| 5     | a) List the operators used in the verilog programming. (5M) b) With the help of verilog code, design D Flip/flop and verify using its truth table. (5M)                                                                                           | 10    | CO4        | L1<br>L4        |
|       | OR                                                                                                                                                                                                                                                |       |            |                 |
| 6     | Develop a Verilog code for a Decade UP/DOWN counter. (10M)                                                                                                                                                                                        | 10    | CO4        | L3              |



# K.S.R.M. College of Engineering, Kadapa (Autonomous)

Dept.: CSE
Academic Year
2023 – 2024

B. Tech Mid Term Examinations June - 2024

| Subject Code | : | 2005403 | Subject: | PRINC | CIPLES OF OPERA | ATING SYST | EMS                              |
|--------------|---|---------|----------|-------|-----------------|------------|----------------------------------|
| Mid Term     | : | 11      | Marks:   | 30M   | Regulation:     | R20UG      | Duration: 90 Min                 |
| Semester     | : | IV      | Section: | All   |                 |            | Date: 26 <sup>th</sup> June 2024 |

| . No |                                                                                                                                                                                                       |       |      |        |      | Qu | estion | (s)           |     |         |     |     |     | Marks | BL      | со  |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--------|------|----|--------|---------------|-----|---------|-----|-----|-----|-------|---------|-----|
| 1.   | Explain paging model of Logical memory and Physical memory with an example.                                                                                                                           |       |      |        |      |    |        |               |     | 10M     | L3  | CO3 |     |       |         |     |
|      |                                                                                                                                                                                                       |       |      |        |      |    |        | (OR           | )   |         |     |     |     |       |         |     |
| 2.   | Differentiate Sequential Access and Direct Access of a file with an example.                                                                                                                          |       |      |        |      |    |        |               |     |         | 10M | L2  | CO4 |       |         |     |
| 3.   | Explain Access matrix with copyrights                                                                                                                                                                 |       |      |        |      |    |        |               |     |         | 10M | L1  | CO5 |       |         |     |
|      |                                                                                                                                                                                                       |       |      |        |      |    |        | (OR           | )   |         |     |     |     |       | 411.200 |     |
| 4.   | Consider a system with a page frame capacity of 3 and the following page reference string:  3 2 1 3 4 1 6 2 4 3 4 2 1 4 5 2 1 3 4  Apply the LRU (Least Recently Used) page replacement algorithm and |       |      |        |      |    |        |               | 10M | L5      | CO3 |     |     |       |         |     |
|      | determine the number of page faults.                                                                                                                                                                  |       |      |        |      |    |        |               |     |         |     |     |     |       |         |     |
| 5.   | Explain U                                                                                                                                                                                             | ser A | uthe | nticat | ion. |    |        |               |     |         |     |     |     | 10M   | L1      | CO5 |
|      |                                                                                                                                                                                                       |       |      |        |      |    |        | (OR           | )   |         |     |     |     |       |         | L   |
| 6.   | Consider a system with four resource types (A, B, C, D) and five processes (P0, P1, P2, P3, P4). The Allocated, maximum and available resource process are as follows:                                |       |      |        |      |    |        |               |     |         |     | 10M | L4  | CO4   |         |     |
|      | Process                                                                                                                                                                                               |       | Allo | catio  | n    |    | P      | Max Available |     |         |     |     |     |       |         |     |
|      |                                                                                                                                                                                                       | Α     | В    | C      | D    | Α  | В      | C             | D   | A B C D |     |     |     |       |         |     |
|      | PO                                                                                                                                                                                                    | 0     | 0    | 1      | 2    | 0  | 0      | 1             | 2   | 1       | 5   | 2   | 0   |       |         |     |
|      | P1                                                                                                                                                                                                    | 1     | 0    | 0      | 0    | 1  | 7      | 5             | 0   |         |     |     |     |       |         |     |
|      | P2                                                                                                                                                                                                    | 1     | 3    | 5      | 4    | 2  | 3      | 5             | 6   |         |     |     |     |       |         |     |
|      | P3                                                                                                                                                                                                    | 0     | 6    | 3      | 2    | 0  | 6      | 5             | 2   |         |     |     | İ   |       |         |     |
|      | P4                                                                                                                                                                                                    | 0     | 0    | 1      | 4    | 0  | 6      | 5             | 6   |         |     |     |     |       |         |     |
|      | P3 0 6 3 2 0 6 5 2                                                                                                                                                                                    |       |      |        |      |    |        |               |     |         |     |     |     |       |         |     |

## K.S.R.M COLLEGE OF ENGINEERING, KADAPA

(AUTONOMOUS)

Dept.: CSE Academic Year 2023-2024

**B.Tech Mid Term Examinations June 2024** 

Subject Name: COMPUTER ORGANIZATION Subject Code : 2005402 Mid Term : II Marks: 30 Regulation: R20 UG **Duration: 90 Min** 

Year II : Semester: IV Section: A, B & C Date: 27-06-2024

Answer any Three Questions choosing one Question from each Unit.

#### All Questions carries equal marks

| Q. No | Question (s)                                                                          | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BL                                                                  | CO                                     |
|-------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|
|       | UNIT-III                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * ( ***********                                                     | ************************************** |
| 1     | Discuss in detail about Memory Reference Instructions (MRI).                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                   | 3                                      |
|       | OR                                                                                    | dentile of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                                                                     | *************************              |
| 2     | Define addressing mode and discuss various addressing modes in detail.                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                   | 3                                      |
|       | UNIT-IV                                                                               | dest_111111.011.011111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |                                        |
| 3     | Explain about the following a. Microprogram Sequencer b. Microprogrammed Control Unit | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                   | 3                                      |
|       | OR                                                                                    | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hasan gara da bankar ingi nga nga paramat na dinapani da bana a man | A 4                                    |
| 4     | Discuss about the following a. Instruction Pipeline b. Virtual Memory                 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                   | 4                                      |
|       | UNIT-V                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***************************************                             | ·                                      |
| 5     | What is Cache Memory? Discuss various mapping procedures.                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                   | 4                                      |
|       | OR                                                                                    | erente fet (meter eren setzbyte den mende (tempe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                                        |
| 6     | Explain about the following a. Handshaking b. DMA Transfer                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                   | 5                                      |

BL - Bloom's Taxonomy Levels (1- Remembering, 2- Understanding, 3 - Applying, 4 -Analyzing, 5 - Evaluating, 6 - Creating)

#### CO - Course Outcomes

Note: - Please mention only Number in BL and CO

| · K.S        | R.N  | 1. Colleg | e of Engir | neerin  | g, Kadapa      |            | Dept.:      | CSE        |
|--------------|------|-----------|------------|---------|----------------|------------|-------------|------------|
|              |      |           | utonomou   |         | •              |            | Acad        | demic Year |
| В.           | Tech | Mid Term  | n Examinat | ions JU | NE - 2024      |            | 202         | 23-2024    |
| Subject Code | :    | 2004403   | Subject:   | Micro   | processors and | Microcontr | ollers      |            |
| Mid Term     | :    | 11        | Marks:     | 30M     | Regulation:    | R20UG      | Duration: 9 | 0 Min      |
| Semester     | :    | IV        | Section:   | A, B a  | nd C           |            | Date: 28-06 | -2024      |

| Q. No | Question (s)                                                                  | Marks | BL | со  |
|-------|-------------------------------------------------------------------------------|-------|----|-----|
| 1.    | a) Explain the programmable peripheral interface 8255.                        | 7M    | L2 | CO2 |
|       | b) List out the features of 8259.                                             | 3M    | L2 | CO1 |
|       | (OR)                                                                          |       |    | L   |
| 2.    | a) Explain the programmable communication interface 8251.                     | 5M    | L2 | CO2 |
|       | b) Briefly explain about DMA controller.                                      | 5M    | L2 | COI |
| 3.    | a) Explain the architecture of 8051 microcontroller with a neat block diagram | 7M    | L2 | CO2 |
|       | b) List out the addressing modes of 8051 microcontroller & explain any two.   | 3M    | L3 | CO5 |
|       | (OR)                                                                          |       |    |     |
| 4.    | a) List out the features of the 8051 microcontrollers.                        | 5M    | L2 | CO1 |
|       | b) Explain the interrupt structure of 8051 microcontroller.                   | 5M    | L3 | CO4 |
| 5.    | a) What are the various registers in ARM? Explain?                            | 5M    | L2 | COI |
|       | b) Explain Single register load-store instructions of ARM?                    | 5M    | L3 | CO2 |
|       | (OR)                                                                          |       | 1  |     |
| 6.    | a) Explain ARM design philosophy.                                             | 5M    | L2 | CO1 |
|       | b) Compare the differences between RISC and CISC.                             | 5M    | L2 | COI |

| K.S.                |          | COLLEGE O (AUT                                                 | ONOMOUS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | une 2024                              |                            | 2                     | CS<br>idemic Yea<br>023– 2024 |                              |
|---------------------|----------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------|-----------------------|-------------------------------|------------------------------|
| ubject (<br>Aid Ter | Code     |                                                                | Subject: Digital<br>Marks: 30<br>Semester: IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Regulation: I<br>Section: A, l        | 20 UG                      | Duration<br>Date: 29/ |                               |                              |
| Zear                |          |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                            | Marks                 | 81                            | СО                           |
| Q. No               |          | With a neat diag                                               | Question (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ation of 4-bit                        | magnitude                  | 5                     | L2,L3                         | and the second second second |
| 1                   |          | comparator.<br>Implement full add                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                            | 5                     | L4                            | CO3                          |
|                     |          | gates.                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OR                                    |                            |                       |                               |                              |
|                     | a.       | Explain the signification of the significant following Boolean | an function by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | using 8X1 II                          | struct the nultiplexer.    | 5                     | L4                            | CO3                          |
| 2                   |          | $F(A,B,C,D) = \sum m$                                          | (0,1,2,4,6,9,12,14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                            | 5                     |                               |                              |
| 3                   | Wh       | Explain Priority E<br>nat is sequential<br>citation table, and | circuit? Construct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the character<br>tion for SR, D       | istic table,<br>, JK and T | 10                    | L4                            | CO4                          |
|                     | flip     | flops.                                                         | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | OR                                    |                            |                       |                               | 775 Sec. 70 State (1985)     |
| 4                   | a.<br>b. | Dogian a synch                                                 | Mealy state mach<br>aronous sequential<br>e or more consecu-<br>in input line.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | il circuit mai                        | ucteets                    | 5<br>a<br>s 5         | L4<br>L6                      | CO4                          |
| 5                   | a.<br>b. |                                                                | Explain about bidirn the working of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rectional shift re<br>3-bit synchrono | egisters?<br>ous up/dow    | n 5 5                 | L1,L2<br>L4                   | CO5                          |
|                     |          | counter.                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OR                                    |                            |                       |                               |                              |
| 6                   |          | xplain about PLA?                                              | Construct the PLA<br>$F1(A,B,C) = \sum t$<br>$F2(A,B,C) = \sum t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n(0,1,2,4)                            | ing Boolea                 | n<br>10               | L6                            | COS                          |
|                     |          | membering<br>nalyzing                                          | L2-Uerstandir<br>L5-Evaluating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | L3-Applyi<br>L6-Creatir    |                       |                               |                              |

#### K.S.R.M COLLEGE OF ENGINEERING, KADAPA (AUTONOMOUS)

B.Tech., Mid Term Examinations June/July -2024

Marks: 30

Dept.: CSE Academic Year 2023 - 2024Subject: PROBABILITY THEORY AND STATISTICAL METHODS

**Duration: 90 Minutes** 

II Semester: IV Answer ALL the questions. All Questions carry Equal Marks

2021405

: II

Course Code

Mid Term

Year

 $3 \times 10 = 30 \text{ Marks}$ 

Date: 01-07-2024

| Q.<br>No |                                                                                             |                             |                    | Ques   | tion (         | (s)    |         |       |          |                 | Marks | BL | СО  |
|----------|---------------------------------------------------------------------------------------------|-----------------------------|--------------------|--------|----------------|--------|---------|-------|----------|-----------------|-------|----|-----|
| 1        | Explain: (i) Null I<br>(iv) Level of Signif                                                 | Typothericance (            | sis (ii)<br>v) Typ | Alte   | ernati<br>Erro | ve H   | ypoth   | esis  | (iii) (  | Critical region |       | L2 | CO3 |
|          |                                                                                             |                             | 3300               |        |                | OF     |         |       |          | <i>e</i> :      |       |    |     |
| 2        | In a city A, 20% of physical defect. In boys had the same at 0.05 level of sign             | another<br>defect. I        | s the d            | 3, 18. | 5% o           | f a ra | ındon   | sam   | nle o    | f 1600 school   | 10M   | L4 | CO3 |
| 3        | The nicotine contents be as follows:  SampleA 24 SampleB 27  Can it be said the Population. | 3                           | 7                  | 26     | 8              |        | 21      |       | 25<br>22 | 36              | 10M   | L4 | CO4 |
|          |                                                                                             |                             |                    |        |                | OR     |         |       |          |                 |       |    |     |
| 4        | A pair of dice are the below:    Sum                                                        | 4<br>4 35<br>the dice       | 5<br>37            | 6 44   | 7 65           | 8 51   | 9       | 2     | 10<br>26 | 11 12<br>14 14  | 10M   | L4 | CO4 |
| 5        | Each telephone call indicates the quality at a busy hour. Resu Sample no. 1  Mean 20        | of service lts for the 2 34 | ce. Fiv            | e cal  | ls cho         | sen a  | it rand | dom a | and tir  | nes recorded    | 10M   | L3 | CO5 |
|          | Range 13                                                                                    | 9                           | 15                 | 5      | 20             | 17     | 21      | 11    | 10       | 10              | İ     | į  |     |
|          | Construct $\bar{X}$ and R c                                                                 | harts an                    | d deter            | rmine  | whe            | ther t | he pro  | oduct | is un    | der control.    |       |    |     |

Regulation: R20 UG

Section : A,B & C

| Samp<br>No.         | le 1 | 2  | 3  | 4  | 5 | 6 | 7  | 8  | 9 | 10 |     | ,  |     |
|---------------------|------|----|----|----|---|---|----|----|---|----|-----|----|-----|
| No. of defect units | - 1  | 15 | 14 | 26 | 9 | 4 | 19 | 12 | 9 | 15 | 10M | L3 | CO5 |

|              | COLLEGE   | PENCIMEEDI                | NG, KADAPA            | Dept.:       | AIML        |
|--------------|-----------|---------------------------|-----------------------|--------------|-------------|
| K.S.R.M      |           |                           | ino, Kadai is         | Ac           | ademic Year |
| R T          |           | TONOMOUS)  Examinations J | ULY 2024              |              | 2023-2024   |
| Subject Code | : 2039402 | Subject: Design           | and Analysis of Algor | ithms        |             |
| Mid Term     | : II      | Marks: 30                 | Regulation: R20 UG    | Duration:    |             |
| Vear         | : II      | Semester : IV             | Section : A           | Date :27/6/2 | 24          |

| . No | Question (s)                                                                                                                                                                     | Marks | BL                                        | CO                                                 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|----------------------------------------------------|
| 1    | Construct OBST using the following instance $n=4$ and keys= $(10,20,30,40)$ , $p[1:4]=(3,3,1,1)$ and $q(0:3)=(2,3,1,1,1)$ ?                                                      | 10    | A                                         | CO3                                                |
|      | OR                                                                                                                                                                               |       |                                           | 20-0-0-1 - 1-1-0-0-0-1 - 1-1-0-0-0-1 - 1-1-0-0-0-0 |
| 2    | Calculate the minimum cost path of the Travelling Sales person problem with the help of following Graph & Adjacency matrix?  1 2 3 4  1 0 10 15 20  5 0 9 10  6 13 0 12  8 8 9 0 | 10    | U                                         | CO3                                                |
| 3    | Write the algorithm for Bi-connected components with the help of an example?                                                                                                     | - 10  | Az                                        | CO4                                                |
|      | OR                                                                                                                                                                               |       | ***************************************   |                                                    |
| 4    | Write the algorithm for Backtracking general method? Draw the state space of Sum of Subsets with an instance w={5,10,12,13,15,18}, m=30,n=6using Backtrack approach?             | 10    | A                                         | CO4                                                |
| 5    | Solve the Travelling sales persons problem generated by LC branch and bound solution/ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                     | 10    | A                                         | CO5                                                |
|      | OR                                                                                                                                                                               |       | 400 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |                                                    |
| 6    | a)Explain NP-Complete and NP-Hard class problems with examples? b)Write the COOK'S theorem with an example?                                                                      | 5     | U                                         | COS                                                |

# Faculty In-charge • -Remembering

- U-Understanding
- A-Applying
- Az- Analyzing
- E-Evaluating

# K.S.R.M. College of Engineering, Kadapa (Autonomous) B.Tech. Mid Term Examinations June/July – 2024

Academic Year

2023 - 2024

AI&ML

| Subject Code | : | 2039403 | Subject: | OPER | ATING SYSTEMS |       |                      |
|--------------|---|---------|----------|------|---------------|-------|----------------------|
| Mid Term     | : | 11      | Marks:   | 30M  | Regulation:   | R20UG | Duration: 90 Min     |
| Semester     | : | IV      | Section: |      |               |       | Date: 28th June 2024 |

| Q. No                                    | Question (s)                                                                                                                                              | Marks | BL | CO  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|-----|
| 1.                                       | A) Explain demand paging in detail.                                                                                                                       | 5M    | L2 | CO3 |
| le le le le le le le le le le le le le l | B) Explain FIFO, Optimal and LRU page replacement algorithms.  Consider page reference string  7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 | 5M    | L3 | CO3 |
|                                          | and 3 frames in main memory. Find the number of page faults for the page replacement algorithms FIFO, Optimal and LRU.                                    |       |    | =,  |
|                                          | (OR)                                                                                                                                                      |       |    |     |
| 2.                                       | A) Explain about demand paging                                                                                                                            | 5M    | L2 | CO3 |
|                                          | B) Write short notes on – first fit, best fit, worst fit with suitable examples.                                                                          | 5M    | L2 | CO3 |
| 3.                                       | A) What is a deadlock? What are the necessary and sufficient conditions for                                                                               | 5M    | L2 | CO4 |
|                                          | the dead lock?                                                                                                                                            |       |    |     |
|                                          | B) Explain different file accessing methods.                                                                                                              | 5M    | L2 | CO4 |
|                                          | (OR)                                                                                                                                                      |       |    |     |
| 4.                                       | Explain about Banker's algorithm with suitable example.                                                                                                   | 10M   | L3 | CO4 |
| 5.                                       | A) Explain about directory structure                                                                                                                      | 5M    | L2 | CO4 |
|                                          | B) Write short notes on swapping.                                                                                                                         | 5M    | L1 | CO3 |
|                                          | (OR)                                                                                                                                                      |       | L  |     |
| 6.                                       | What is access matrix. Explain about implementation of access matrix.                                                                                     | 10M   | L2 | CO5 |

LSR0

HOD

| • 50         | K.   | S.R.M. Colleg | ge of Engineer | ing, I       | Kadapa      |       | Dept     | AIML       |
|--------------|------|---------------|----------------|--------------|-------------|-------|----------|------------|
|              |      | (A            | utonomous)     |              |             |       | Acad     | lemic Year |
| •            | B. T | ech Mid Tern  | n Examinatio   | ns Jui       | ne – 2024   |       | 202      | 23 - 2024  |
| Subject Code | 1:   | 2039404       | Subject:       | DATA SCIENCE |             |       |          |            |
| Mid Term     | :    | П             | Marks:         | 30<br>M      | Regulation: | R20UG | Duration | ı: 90 Min  |
| Semester     | :    | IV            | Section:       | -            |             |       | Date:29. | 06.2024    |

| Q. No | Question (s)                                                                          | Marks    | BL | CO  |
|-------|---------------------------------------------------------------------------------------|----------|----|-----|
| 1.    | A) Briefly explain about following terms.                                             | 5M       | L2 | CO4 |
|       | a) Data Frame                                                                         |          |    | _   |
|       | b) Matrix                                                                             |          |    |     |
|       | B) Write installation steps of R-software                                             | 5M       | Ll | CO4 |
|       | (OR)                                                                                  |          |    | L   |
| 2.    | Describe about command packages in R                                                  | 10M      | L2 | CO4 |
|       |                                                                                       | 1        | 1  |     |
| 3.    | Explain about following terms.                                                        | 10M      | Ll | CO4 |
|       | a) Vector                                                                             |          |    |     |
|       | b) List                                                                               | <u> </u> |    |     |
|       | (OR)                                                                                  |          |    |     |
| 4.    | Explain different terminology from Social Networks.                                   | 10M      | Li | COS |
|       |                                                                                       |          |    |     |
| 5.    | A) How to write a technical journalism and explain history on Data     Journalism     | 5M       | L2 | COS |
|       | B) Explain the background on Social Network Analysis from a Statistical point of view | 5M       | L3 | COS |
|       | (OR)                                                                                  |          |    |     |
| 6.    | How Social Network Analysis was implemented at Morning Analystics explain in detail.  | 10M      | L2 | COS |

| K.S.R.M COLLEGE OF ENGINEERING, KADAPA |     |          |             |                           |               | H&S      |
|----------------------------------------|-----|----------|-------------|---------------------------|---------------|----------|
| (AUTONOMOUS)                           |     |          |             |                           | Academic Year |          |
| В. Т                                   | ech | Mid Term | Examination | s June/July 2024          | 202           | 3 - 2024 |
| Subject Code                           | :   | 20MC409  | Subject Nan | ne: Constitution of India |               | O at     |
| Mid Term                               | :   | II       | Marks: 30   | Regulation: R20UG         | Duration:     | 90 Min   |
| Semester:                              |     | IV       |             | Branch: AI & ML           | Date: 02-     | -07-2024 |

#### Answer Three Questions choosing One Question from each Part All Questions carry equal marks

| Q. No. | Questions                                                                | Marks | BL | Cos |
|--------|--------------------------------------------------------------------------|-------|----|-----|
| 1      | Explain the Powers and Functions of Chief Minister?                      | 10    | L2 | CO3 |
|        | OR                                                                       | L     |    | · L |
|        | Explain the following:                                                   |       |    |     |
| 2      | A) Functions of State Council of Ministers                               | 05    | L2 | CO3 |
| =      | B) Role of Governor in the State                                         | 05    | L2 | CO3 |
| 3      | Discuss the functions & powers of municipal corporation?                 | 10    | L2 | CO4 |
|        | OR                                                                       |       |    |     |
| 4      | Explain Role and Responsibilities of District Collector?                 |       | L2 | CO4 |
| 5      | Describe the features and Functions of the Election Commission of India? | 10    | L2 | CO5 |
|        | OR                                                                       |       |    |     |
| 6      | Write about the following:  A) Role of National Commission for OBC       | 05    | L2 | CO5 |
|        | B) National Commission for Women Welfare                                 | 05    | L2 | CO5 |

BL - Bloom's Taxonomy Levels

1- Remembering, 2- Understanding, 3 - Applying, 4 - Analysing, 5 - Evaluating, 6 - Creating

### K.S.R.M. College of Engineering, Kadapa (Autonomous)

Academic Year

Dept.:

2023 - 2024

AI&ML

| • В          | . recr | i. ivilu Ter | III Examini | ו פווטווג | VIAY-2024        |       |                  |  |
|--------------|--------|--------------|-------------|-----------|------------------|-------|------------------|--|
| Subject Code | :      | 2039405      | Subject:    | Busin     | ess Intelligence |       |                  |  |
| Mid Term     | :      | 11           | Marks:      | 30M       | Regulation:      | R20UG | Duration: 90 Min |  |
| Semester     | 1:     | IV           | Section:    |           |                  |       | Date: 06-05-2024 |  |

| Q. | Question (s)                                                                                                          | Marks | BL       | CO  |
|----|-----------------------------------------------------------------------------------------------------------------------|-------|----------|-----|
| No |                                                                                                                       |       |          |     |
| 1. | Define IBM Cognos and explain its key features?                                                                       | 10    | L2       | CO3 |
|    | (OR)                                                                                                                  | L     | <u> </u> |     |
| 2. | Explain IBM Cognos Workspace and its features?                                                                        | 10    | L2       | CO3 |
| 3. | What is Dashboard in IBM Cognos and how it helps in Business operations?                                              | 10    | L3       | CO4 |
|    | (OR)                                                                                                                  |       |          |     |
| 4. | Explain the steps involved in creating IBM Cognos report right from the start?                                        |       | L2       | CO4 |
| 5. | List out the Popular Data Visualization tools that you know and explain some of the stand out features of IBM Cognos? | 10    | L3       | COS |
|    | (OR)                                                                                                                  |       |          |     |
| 6. | Explain Reports and Dashboard in IBM Cognos, when to choose and why?                                                  | 10    | L3       | COS |



website